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Novel pathogens continue to emerge in human, dom-

estic animal, wildlife and plant populations, yet the

population dynamics of this kind of biological invasion

remain poorly understood. Here, we consider the

epidemiological and evolutionary processes underlying

the initial introduction and subsequent spread of a

pathogen in a new host population, with special

reference to pathogens that originate by jumping

from one host species to another. We conclude that,

although pathogen emergence is inherently unpre-

dictable, emerging pathogens tend to share some

common traits, and that directly transmitted RNA

viruses might be the pathogens that are most likely

to jump between host species.

Introduction

An emerging pathogen can be defined as the causative
agent of an infectious disease whose incidence is increas-
ing following its appearance in a new host population or
whose incidence is increasing in an existing host popu-
lation as a result of long-term changes in its underlying
epidemiology [1]. One potential source of an emerging
pathogen is a different host species (a ‘reservoir’) in which
the pathogen is already established (Table 1). Switches
from one host species to another (species ‘jumps’) have led
to some of the most devastating disease epidemics
recorded, including the ongoing HIV/AIDS pandemic in
human communities worldwide, the decimation of the
European rabbit population by myxomatosis during the
mid 20th century, the catastrophic impact of rinderpest on
African ruminants during the late 19th century and, more
recently, widespread mortality of North Sea seals as a
result of distemper [2–5]. It has even been argued that
many of the main killer diseases of humans (e.g. measles,
TB, influenza and smallpox) emerged through pathogens
jumping from domestic animals to humans over the past
10 000 years [6]. Species jumps have also given rise to
devastating epidemics of plant pathogens in crop species
(e.g. potato late blight in the cultivated potato) and in wild
plant species (e.g. the near extinction of American chest-
nut trees by chestnut blight) [7–9].
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Conversely, there are numerous examples of species
jumps that have had far less dramatic consequences: for
example, BSE/vCJD and Ebola virus in humans which,
although undoubtedly serious problems in themselves,
show no signs of ‘taking off ’ in the way that HIV/AIDS has.
Moreover, there are many pathogens that have a long
history of routinely jumping between species (e.g. rabies
virus into humans from domestic or wild carnivores)
without, again, triggering major epidemics in the ‘new’
host population. Understanding the epidemiology and
evolutionary biology underlying these differences is
crucial for understanding the phenomenon of emerging
infectious diseases in human, domestic animal, wildlife
and plant populations.
Pathogen population dynamics

Epidemiological theory has a well developed conceptual
framework for evaluating the spread of infection through
a host population (Box 1). The expected size of an outbreak
depends upon the number of introductions, so-called
‘primary’ cases of infection, and the potential for trans-
mission of the pathogen from one new host to another
(Box 1, Figure Ia). This transmission potential can be
expressed in terms of the basic reproduction number, R0,
and pathogens that enter a new host population via a
species jump can be placed in two categories depending on
its value. IfR0 is!1 in the new host population then, even
if the new host repeatedly acquires the pathogen, there
will be only limited spread of infection within that
population. This category of emerging pathogen is unli-
kely to constitute the greatest disease threat; examples in
humans include the Ebola, monkeypox and avian influ-
enza viruses and the vCJD agent. Conversely, if R0 is O1
in the new host population, then there is a finite chance
(Box 1, Figure Ib) that a major epidemic will occur. This
category is likely to constitute the greatest disease threat;
examples in humans include HIV, influenza type A virus
and SARS coronavirus.

The key difference between the two categories lies in
the origin of infections within the new host population: if
R0 is !1, then a large proportion of infections will be
acquired directly from the original source host population;
if R0 is O1 (and the outbreak takes off), then most
infections will be acquired from within the new host
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Table 1. Examples of pathogens considered to have emerged via a species jump

Pathogen Original host New host Year reported Refs

Transmissible spongiform encephalopathies

BSE/vCJD Cattle Humans 1996 [53]

Viruses

Rinderpest Eurasian cattle African ruminants Late 1800s [4]

Myxoma virus Brush rabbit/Brazilian rabbit European rabbit 1950s [3]

Ebola virus Unknown Humans 1977 [54]

FPLV/CPV Cats Dogs 1978 [55]

SIV/HIV-1 Primates Humans 1983 [2]

SIV/HIV-2 Primates Humans 1986 [2]

Canine/Phocine distemper virus Canids Seals 1988 [56]

Hendra virus Bats Horses and humans 1994 [57]

Australian bat lyssavirus Bats Humans 1996 [57]

H5N1 influenza A Chickens Humans 1997 [32]

Nipah virus Bats Pigs and humans 1999 [57]

SARS coronavirus Palm civets Humans 2003 [58]

Monkeypox virus Prairie dogs Humans 2003a [59]

Bacteria

Escherichia coli O157:H7 Cattle Humans 1982 [60]

Borrelia burgdorferi Deer Humans 1982 [15]

Fungi

Phytophthora infestans Andean potato Cultivated potato 1840s [8]

Cryphonectria parasitica Japanese chestnut American chesnut Late 1800s [9]
aMonkeypox was first reported in humans in 1970, but infections acquired from prairie dogs were not seen until 2003.
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population, the resulting positive feedback potentially
fuelling a major epidemic. There is a transition between
these behaviours in the region R0z1, where the size of an
epidemic is highly sensitive to small changes in the
transmission potential (Box 1, Figure Ia). This is
especially relevant to pathogen emergence because it
implies that relatively small changes in R0 can have large
impacts on the incidence of infection. As has been widely
discussed, there are many reasons why R0 might change.
These include:

† Changes in host ecology and environment. For
example, urbanization has been cited as a key factor
increasing the transmission potential of many human
viral and bacterial infections [10,11], as has the
extremely high densities of European wheat and barley
crops for diseases such as yellow rust and powdery
mildew, respectively [12,13]. Another example is the
ongoing concern that climate change might be associ-
ated with changing distributions of vector-borne dis-
eases, such as tick-borne encephalitis and Lyme disease
[14–16];
† Changes in host behaviour and movements. For
example, patterns of sexual behaviour directly affect
the potential spread of sexually transmitted diseases
[10,17], and global travel exacerbated the spread of
SARS [18];
† Changes in host phenotype. For example, immuno-
suppression during hospital treatments or due to the
effects of HIV/AIDS has been cited as contributing to
the spread of numerous infections (e.g. the fungal
pathogen Pneumocystis carinii) [10,11,17]. The loss of
cross-immunity (where acquired immune responses
induced by exposure to one microorganism are at
least partially protective against infection with
another; a quite general concept that, for example,
underlies the efficacy of BCG vaccination) might also
increase the potential for invasions by new pathogens,
www.sciencedirect.com
as has been suggested for several pairings: yaws and
syphilis; leprosy and TB; yellow fever and dengue fever;
smallpox and monkeypox; and vivax malaria and
falciparum malaria [17,19,20];
† Changes in host genetics. For example, the loss of
major histocompatibility complex haplotypes or other
genetic diversity in inbred livestock or small popu-
lations might increase susceptibility to infection [21].
Among plants, the use of single cultivars increases the
vulnerability of many crop species to widespread
epidemics of pathogens spilling over from closely
related wild host species: for example, commercial
banana plantations composed of a single clone are at
risk from various races of Panama disease, Fusarium
oxysporum [22];
† Changes in pathogen genetics (discussed in detail
below).
The biology of jumps

The discussion above considers the fate of primary cases of
infection introduced into a new host population. But to
understand species jumps, we need to consider in greater
detail the biological processes occurring around the jump
itself.

The first step is exposure of the new host species to the
pathogen (Figure 1). The rate of exposure will be a
function of the ecologies and behaviour of the two host
species and of the transmission biology of the pathogen
itself (including the biology of any vectors involved).
Indeed ‘ecological’ change, in its broadest sense, is
associated with most instances of disease emergence
[11,23,24]; for example, those of phocine distemper, Lyme
disease, BSE and hepatitis C. For vector-borne diseases,
exposure of new host species might be facilitated by the
pathogen jumping between vector species or populations,
as has been suggested for Venezuelan equine encephalitis
virus (VEEV) [25].
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Box 1. Epidemic thresholds and R0, the basic reproduction number

The basic reproduction number, R0, is the average number of

secondary cases of infection generated by a single primary case

introduced into a large population of previously unexposed hosts [5].

R0 is related to the transmissibility of the pathogen (new infections per

unit time) and the duration of infectiousness. It is sometimes referred

to as a measure of transmission potential (with analogies to rmax as

used in simple ecological theory) because it refers to the situation

where there are no density-dependent constraints on the spread of

infection. R0 defines an important threshold: if R0O1, each primary

infection will, on average, generate more than one secondary infection

and the pathogen is capable of invading the host population; if R0!1,

each primary case will, on average, fail to replace itself (although short

chains of transmission are still possible) and each single introduction

will lead to no more than a minor outbreak.

The expected final size of an outbreak of an infectious disease, Ifinal
can be related to R0 and I0, the number of primary cases of infection,

using a modified version of the Kermack–McKendrick equation

(Equation I, [26]):

Ifinal ZNK ðNK I0Þexp
KR0Ifinal

N

� �
[Eqn I]

where N is the size of the susceptible population.

The behaviour of this equation is illustrated in Figure Ia. For R0!1,

the size of an outbreak is determined mainly by the number of primary

cases, I0. For R0O1, the size of an outbreak is determinedmainly by the

size of the susceptible population, N. For R0 close to 1, the size of an

outbreak is sensitive to the precise value of R0.

Even for R0O1, a major epidemic is not inevitable: it is possible that

the infection will die out without causing a major epidemic owing to

demographic stochasticity. The probability of a major epidemic

occurring can be related to R0 and I0 using Equation II [17]:

PðepidemicÞ Z 1K
1

R0

� �I0

[Eqn II]

The behaviour of this equation is illustrated in Figure Ib. For R0

values not much above 1, there is a high probability that a major

epidemic will not occur unless there are many primary cases. Even for

larger R0 values, there is a good chance that an epidemic will not occur

if there are only a few primary cases.

The probability that, following a single cross-species transmission

event by a pathogen with R0!1in the new host, the pathogen adapts

to its new host during an outbreak is approximated by Equation III [19]:

PðadaptationÞz
mR0

1KR0

[Eqn III]

where m is the (small) probability that the required genetic change

occurs during a single infection. The behaviour of this equation is

illustrated in Figure Ic. If the new R0 is O1, then the evolved pathogen

will give rise to a major epidemic with the probability given by

Equation II.
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(c)

Figure I. Impact of R0 on the population dynamics of pathogen emergence.

(a) Relationship between final epidemic size (log scale) and R0 from Equation I

with N Z10 000, for I0Z1, 10, 100 and 1000. (b) Relationship between the

probability of a major epidemic, P(epidemic), and R0 from Equation II, for I0Z1, 5,

10 and 25. Redrawn with permission from [17]. (c) Approximate relationship

(valid when m/1 and R0 is !1 and not too close to 1) between the probability

that the pathogen adapts during an outbreak so that R0 becomes O1,

P(adaptation), and the original value of R0 from Equation III for mZ0.0001, 0.001

and 0.01. Redrawn with permission from [19].
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The second step is for the pathogen to be able to infect
the new host; that is, for pathogen and host to be
‘compatible’. Pathogens have highly variable host ranges:
some only naturally infect a single species (e.g. the mumps
virus or Plasmodium falciparum in humans), whereas
others can infect hosts from different taxonomic orders or
even classes (e.g. rabies virus or the protozoanBlastocystis
hominis) [26]. The reasons for this variation are poorly
www.sciencedirect.com
understood, although certain factors, such as an indirect
route of transmission, are known to be associated with a
broad host range [26]. For viruses, one such factor is the
use of cell receptors that are phylogenetically conserved
[23]. Crucial to the ability of a cell-free virus to infect hosts
is the presence of appropriate cell receptors on host cells.
When receptors are conserved across a range of potential
host species, the hosts are likely to be predisposed to

http://www.sciencedirect.com


Figure 1. Preventing cross-species transmission. As part of a campaign to reduce

the risk to public health in Matongo, Tanzania, local people in the region are

encouraged to have their domestic dogs vaccinated against rabies. Reproduced

with permission from T. Lembo.
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infection by the viruses using these receptors. For
example, use of conserved receptors might explain the
wide host ranges of foot-and-mouth diseases virus
(FMDV), which uses the integrin vitronectin, and rabies
virus, which uses the nicotinic acetylcholine receptor [27].

However, even if capable of infecting a different host
species, pathogens are usually, although not always,
significantly less infectious to it. This is referred to as
the ‘species barrier’, and it can be substantial, implying
that much higher doses are required to infect the new
host: for example, the dose of rabies virus from foxes
required to infect dogs and cats has been shown
experimentally to be up to a million times greater than
that required to infect other foxes [28].

The third and final step in a successful species jump is for
the pathogen to be sufficiently transmissible between indi-
viduals within the new host population. As discussed above,
this relates to the value of R0 and, therefore, whether the
pathogen can successfully invade the new host population.
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Figure 2. Examples of overdispersed outbreak sizes. Plots show the cumulative

fraction of all cases against the cumulative fraction of outbreaks ordered from the

largest to the smallest for outbreaks of human infection with Ebola virus in sub-

Saharan Africa from 1976 to 2004 [red line; 18 outbreaks, 428 cases; data from

ProMed (http://www.promedmail.org), the World Health Organization (http://www.

who.int) and the Centers for Disease Control and Prevention (http://www.cdc.gov)]

and Escherichia coli O157 in Scotland from 1996 to 2003 (blue line; 63 outbreaks,

1008 cases; data fromHealth Protection Scotland (http://www.hps.scot.nhs.uk)). For

both examples, most outbreaks are small (!10 cases) and only a few outbreaks are

large (hundreds of cases), as indicated by the strongly convex shape of the plots.

This is consistent with a general trend for disease outbreak size distributions to

follow a power law with exponent O2, indicative of severe overdispersion [26].
Evolution and host adaptation

If R0 is O1, then there is a sense in which there is
‘an epidemic waiting to happen’; numerous recent examples
include the introductions of West Nile virus into North
American birds, phocine distemper virus into North Sea
seals, and Dutch elm disease into elms in the UK and USA.
Indeed, emerging pathogens are often a special concern
because the absence of shared evolutionary history with the
new host implies an absence of evolved constraints on
susceptibility and pathogenicity, which might, at least in
some instances, enable disease outbreaks of large magni-
tude and unusual severity [21,29].

Conversely, if R0 is !1, then the arguments presented
earlier imply that each primary case will result in a chain
of transmission in the new host population that will
stutter to extinction. This, however, might be overly
optimistic because of the possibility that the pathogen
evolves so thatR0 becomesO1 and, as a result, could go on
to generate a major epidemic [19].
www.sciencedirect.com
This evolution, or ‘adaptation’, of the pathogen can
involve genetic changes ranging from a few nucleotide
substitutions (e.g. canine parvovirus, CPV [30]), through
gene capture from other organisms (e.g. Salmonella
enterica and Escherichia coli [31]), to recombination or
reassortment (e.g. H5N1 influenza [32] and Ophiostoma
novo-ulmi, the agent of Dutch elm disease [33]) and
hybridization (e.g. Phytophthora alni in alder trees in
north-west Europe appears to be an allopolyploid recom-
binant between a newly introduced pathogen of hard
woods, P. cambivora, and a related specialist pathogen of
raspberries and strawberries [34]). Adaptationmight be so
rapid that pathogen lineages adapt to different host
tissues or vector cells versus host cells [25,35].

The probability of successful adaptation occurring
depends on several factors such as: (i) the number of
primary infections, I0; (ii) the initial R0 of the infection in
the new host population; (iii) the number of mutations or
other genetic changes required; and (iv) the likelihood of
these changes occurring and how R0 changes at each step.
It is relatively simple to see that the probability of
emergence increases linearly with I0, but is much more
sensitive to the evolution of R0, particularly when this is
close to 1 [19]. This is because the probability of each (rare)
evolutionary step is proportional to the expected size of the
initial outbreak and, hence, the number of opportunities
for the required genetic change(s) to occur (Box 1,
Figure Ic). The expected size of an outbreak is related
non-linearly to R0 (Box 1, Figure Ia) and, because
conditions are likely to differ from outbreak to outbreak,
outbreak sizes in practice tend to be highly overdispersed,
with occasional larger outbreaks providing more opportu-
nities for adaptation (Figure 2).

We are beginning to understand the biology underlying
host adaptation in just a few instances. For example, virus
receptor use can be labile [27] and just a few point
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mutations on the viral capsid can enable the use of new
receptors: for example, FMDV will switch to using
additional receptors after accumulating just a few amino
acid substitutions in cell culture [36]; feline panleuko-
penia virus (FPLV) evolved into CPV by acquiring the
ability to use the canine transferrin receptor as a result of
a few changes in the capsid amino acid sequence [30]; and
the adaptation of VEEV to equines is associated with
changes in the envelope glycoprotein [25].

But, even though it is sometimes possible to point to
genetic differences between pathogens in the original and
new host, it is often difficult to ascribe these changes to:
(i) events in the original host population before the jump
(i.e. predisposition of novel genotypes to jump species);
(ii) events during the ‘adaptation’ phase where there was a
shift fromR0!1 toR0O1 in the newhost; or (iii) subsequent
divergence once the pathogen is established in the newhost.

Host jumping is likely to have been an important driver
of pathogen diversity through evolutionary time. Evidence
of historically deeper host jumps is provided by incon-
gruencies in the phylogenetic topologies of host species
and their respective pathogens [37]. For example, in a
recent study of RNA viruses, hantaviruses, spumaviruses
and avian sarcoma leucosis viruses showed significant
levels of congruence with their host species, whereas
arenaviruses and lyssaviruses showed no congruence [38].

Future work

There are several additional issues that could also be
analyzed using the above framework for assessing the
likelihood of a successful invasion (many of which apply to
biological invasions in general [39]). For example, fluctu-
ating transmission rates can increase persistence times
for pathogens with R0!1 [40]. It is also possible that,
rather than single introduction(s) into a new host
population, there are periods when the pathogen is
spreading in a mixture of host species (e.g. as has been
proposed for human sleeping sickness [41]); this could
increase persistence times in the new host but, simul-
taneously, reduce selection pressure on the pathogen to
adapt to the new host. And the new host population itself
is unlikely to be homogeneous: some individuals might be
more susceptible to novel pathogens (e.g. owing to
immunosuppression) and/or more exposed to them
(e.g. owing to their behaviour or spatial location [42])
and/or more likely to transmit infection (so-called
‘supershedders’). Such heterogeneities can increase out-
break sizes [5]. The structure of the new host population
might also be important: contrast Ebola, which usually
affects remote communities, with SARS, which arose in a
region with high human population density, large num-
bers of movements and extensive travel. Similarly, the
HIV/AIDS epidemic apparently took off once it had
escaped remote communities and entered urban popu-
lations [17]. The general issue here is the relationship
between ‘samplers’ (individuals with high risk of acquir-
ing novel infections) and ‘spreaders’ (individuals with high
potential for transmitting a novel infection onwards
within the new host population): the closer the epidemio-
logical linkage between these groups the greater the
potential for successful invasions by new pathogens. The
www.sciencedirect.com
mechanism of genetic change of the pathogen is also likely
to be important: if it can evolve not only by mutation, but
also by recombination (e.g. influenza viruses and SARS
coronavirus [32,43]) or by gene capture (e.g. pathogenicity
islands or antimicrobial resistance genes in bacteria
[44,45]) or by hybridization (e.g. P. alni) then this might
influence the epidemiology of species jumps by requiring
the same host to be co-infected with two different
pathogens, perhaps from different sources.

Combating emerging pathogens

The emergence of a new pathogen following a species jump
represents the successful colonization of a new habitat
(reflecting this, emerging pathogens have been compared
to weeds [46]). Although it is extremely hard to predict
which pathogens are most likely to jump between host
species, there are some hints that some progress can be
made. For example, perhaps the most striking feature of
the list of examples of species jumps given in Table 1 is
that the pathogens involved are mostly, and disproportio-
nately, single-stranded RNA viruses. Although Table 1
should not be regarded as an exhaustive survey, this
might well be a genuine effect reflecting the typically
broader host ranges and much higher mutation rates of
RNA viruses [26], facilitating both the initial infection of a
new host and subsequence adaptation to that host. Further
refining this observation, none of the RNAviruses listed are
transmitted by arthropod vectors, perhaps reflecting the
constraints imposed on a small genome by having to be
compatible with a vector as well as a definitive host. In
support of this, both emerging and long-recognised
zoonotic RNA arboviruses tend to be poorly transmis-
sible between humans [24,25], although experimental
evidence for such constraints is inconclusive [25].

A second notable feature of Table 1 is that there is no
obvious indication of close taxonomic relatedness between
the original and the new host species. Consistent with
this, a systematic survey of emerging zoonotic pathogens
of humans [47] found that the most probable reservoirs
were (in rank order): (i) ungulates; (ii) carnivores; (iii)
rodents; (iv) primates; (v) birds and other non-mammalian
hosts; (vi) bats; and (vii) marine mammals. It has even
been suggested that nanoviruses jumped from plants
to vertebrates [48]. A broad host range seems to be
more important to the potential for a pathogen to jump
between species than is the relatedness of the hosts
involved [23,24,47].

The unpredictability of pathogen emergence means
that the first line of defence has to be effective surveil-
lance, requiring identification and monitoring of high-risk
populations or individuals or locations, and even the
setting up of ‘sentinel’ systems [11]. Recent work using
agent-based simulation models points the way to the
efficient design of surveillance systems based on an
understanding of the contact network within the host
population(s) [49]. An effective public health and/or
veterinary response then requires prompt, coordinated
action by multi-disciplinary teams, as exemplified by the
recent global effort led by the World Health Organization
(http://www.who.int) to combat SARS [50]. The import-
ance of rapid identification, assessment and action cannot
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be overstated: often, the single biggest factor affecting the
scale of an epidemic is the speed with which effective
interventions are put in place [51,52].
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